Richter Certified Chemical Safety Valves

gases and liquids

Corrosion-resistant PTFE/PFA

chlorine plants

TFM-PTFE bellows sealed Special design for

Safety in corrosive and high purity applications

Only one certification for vapours, gases and liquids. Your advantages: increased flexibility, no mix-ups of single components, reduced storage requirement

Range of application

- Protection of pressure vessels and plants against excessive pressure, set pressures of 0.1 to 13 bar (1.45-188 psig)
- Operating temperature up to 180 °C (360 °F)
- Corrosive media where metallic materials cannot attain an adequate service life or special metals cause high costs
- Chlorine electrolysis
- Pure and high-purity media
- Metal-reactive media, e.g. H₂O₂, electronic chemicals
- Thermal expansion

Design

- Direct-acting, spring-loaded, bellows safety valve with angle-type valve body
- Normal safety valve, design and performance in acc. with German AD 2000 Code "Technical rules for pressure vessels".
- Opening characteristic similar to full lift and streamlined flow parts result in high discharge coefficients α_d and therefore a high discharge capacity (see page 5).
- Almost proportional performance at low set pressures < 1 bar (< 14.5 psi)
- New: ASME/Sect. VIII, Div. 1 certified safety valve KSEA, see separate publication

Type code:

PFA/PTFE lining KSE/F ...

Antistatic lining KSE/F-L ...

DN inlet/outlet ... _/_

(see page 4)

Bellows of modified TFM-PTFE

- Hermetic seal to valve bonnet and protection of spindle against corrosion
- Much better permeation resistant than standard PTFE
- Flow-protected arrangement
- Specially designed: back pressure on discharge side does not affect set pressure, thus valve also suitable for variable back pressures
- Axial needle bearing in upper spring plate: no twisting of the bellows when adjusting screw is being set

(4) Lifting cap

Lifting cap, lifting lever and bonnet made of ductile cast iron. Lifting lever positioned to prevent accidental actuation. Lifting cap and bonnet lead-sealed, gas-tight on request.

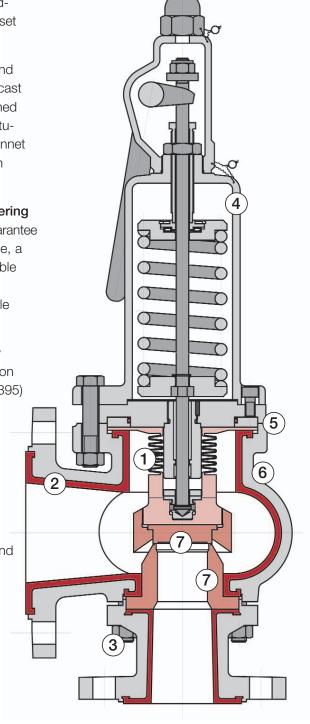
- Metallic stop and centering of bonnet and body guarantee exact guidance of spindle, a constant lift and repeatable performance.
 - Pressure ring adjustable from outside.

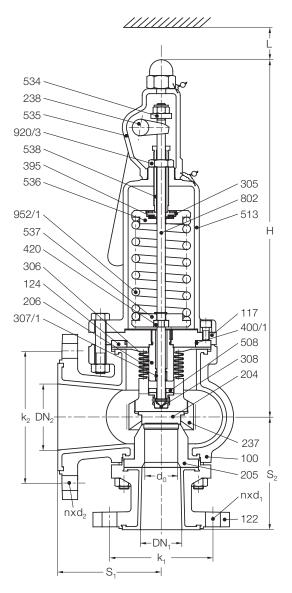
6 Pressure-bearing body

 Made of ductile cast iron EN-JS 1049 (ASTM A395)

 Divergent outlet drains condensate or medium residues.

(7) Seat and plug

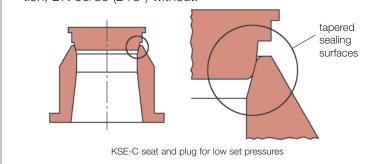

- Individually exchangeable
- Pressure-resistant
 PTFE/carbon compound
 (no glass, no ceramic)
- Optional of pure TFM-PTFE, Hastelloy etc.
- Positive-locking connection of spindle and plug, therefore can also be lifted without admission pressure.


② Thick-walled PFA/PTFE lining of the complete valve body

- Universal corrosion resistance
- Vacuum-proof
- Antistatic lining optional
- Inlet nozzle optionally lined with highly permeation resistant Richter PFA-P lining

③ External corrosion protection

 Epoxy coating, screws and nuts made of stainless steel



Version KSE-C for low pressures, e.g. in chlorine electrolysis

Advantage: tight also at set pressures in the 250 mbar (0.36 psi) range and with working pressure differences in the < 50 mbar (0.07 psi) range

The tapered sealing surfaces have a three times higher surface pressure than flat sealing surfaces.

- Set pressure range 0.15-1.0 bar (2.18-14.5 psi)
- Gas-tight
- No lapping required
- Optimal against solids sedimentation
- Seat Ø: DN 25/50 (1"/2") = 22 mm, DN 50/80 (2"/3") = 40 mm, DN 80/100 (3"/4") = 50 mm, DN 100/150 (4"/6") = 95 mm
- DN 100/150 (4"/6") with 40 % higher discharge capacity than with the standard seat
- Exchangeable, other components identical to those of the KSE standard version
- DN 80/100 (3"/4") and 100/150 (4"/6") available with certification, DN 50/80 (2"/3") without.

Selection table for materials and accessories

Item	Designation	Standard design	Available on request			
100	Valve body	Ductile cast iron EN-JS 1049 (ASTM A395)/PTFE	Lining antistatic PTFE			
117	Thrust flange	1.0038 (steel R-St 37)	1.4301 (stainless steel)			
122	Inlet nozzle	Ductile cast iron EN-JS 1049	lining antistatic PFA,			
		(ASTM A395)/PFA	lining highly permeation-resistant PFA-P			
124	Pressure ring	1.4301 (stainless steel)				
204	Plug	PTFE/carbon compound	TFM-PTFE, PTFE/glass compound,			
205	Seat	PTFE/carbon compound	Hastelloy C, titanium etc.			
206	Bellows	TFM-PTFE				
237	Lifting aid	PTFE/carbon compound	TFM-PTFE, PTFE/glass compound			
238	Lifting lever	Ductile cast iron EN-JS 1049 (ASTM A395)	Without lever			
305	Bearing guide	1.4104 (stainless steel)	Hastelloy C			
306	Spindle guide	1.4301 (stainless steel)	Hastelloy C			
307/1	Guide bush	PTFE/carbon compound				
308	Insert sleeve	1.4301 (stainless steel)	Hastelloy C			
395	Axial needle bearing					
400/1	O-ring	FKM (Viton® or equivalent)				
420	Thrust ring, split	1.0038 (steel R-St 37)	1.4301 (stainless steel), Hastelloy C			
508	Travel stop	1.4301 (stainless steel)				
513	Spring bonnet	Ductile cast iron EN-JS 1049 (ASTM A395)				
534	Spindle nut	1.0570 (steel R-St 52)	1.4301 (stainless steel)			
535	Lifting cap	Ductile cast iron EN-JS 1049 (ASTM A395)	Gas-tight Gas-tight			
536	Upper spring plate	1.0038 (steel R-St 37)	1.4301 (stainless steel)			
537	Lower spring plate	1.0038 (steel R-St 37)	1.4301 (stainless steel)			
538	Adjusting screw	1.4301 (stainless steel)	Hastelloy C			
539/x	Locking plate (not illus.)	Ductile cast iron EN-JS 1049 (ASTM A395)				
802	Spindle	1.4104 (stainless steel)	Hastelloy C			
920/3	Hex. nut, plain	1.0111 (steel)				
952/1	Pressure spring	EN 10270-1-SH, galvanised	1.4301 (stainless steel)			

Large operating range: p_e 0.1-13 bar (1.45-188 psig), -60 to +180 °C (-75 to 360 °F)

Flanges

to DIN EN 1092-2 shape B, PN 16, on request drilled to ANSI, BS etc. and groove to DIN 2512

 ASME-certified series KSEA with flanges to ASME (ANSI) B16.5 Cl. 150, optional with inlet flange Cl. 300, see separate publication

Protection against corrosive atmosphere

- Body with external epoxy coating
- External nuts and bolts of stainless steel

Identification

AD 2000 data sheet A4, DIN EN 19

Back pressures pao in valve outlet

for vapours/gases max. 30 %, for liquids max. 50 % of set pressure, but observe the following:

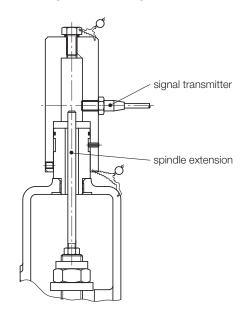
- when set pressure ≤ 4 bar (58 psi),
 p_{a0 max.} = 1 bar (14.5 psi)
- when set pressure > 4 bar (58 psi),

 $p_{a0 \text{ max.}} = 3 \text{ bar } (43.5 \text{ psi})$

Older KSE valves

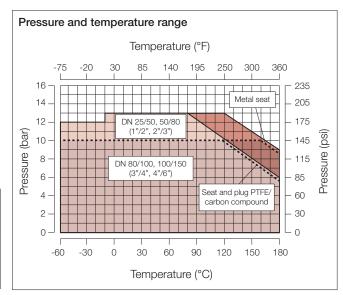
can be retrofitted for the extended operating range of the current KSE technology. Details on request.

Set pressures/Test certification


The set pressure range indicated is spread over various springs within which all intermediate set pressures are possible.

One common certification test No. covering vapours, gases and liquids universally!

Valve si	ze (DN)	Set p	ressure	Certification		
mm inch		bar	psi	test No.		
25/50	1"/2"	0.4-13	5.8-188			
50/80	2"/3"	0.1-13	1.45-188	 TÜV-SV871·D/G/F		
80/100	3"/4"	0.1-10	1.45-145	100-3007170/0/1		
100/150	4"/6"	0.15-10	2.18-145			


Special designs

- · Individual acceptance tests for special designs
- Remote monitoring by electric signal transmitter:

Pressure and temperature range

- Body PN 16
- From -60 to +180 °C (-75 to 360 °F) as a function of set pressure and seat/plug materials in acc. with following diagram (higher pressures on request)

Connecting and installation dimensions to ISO/DIN, weights*

Valve size Inlet flange (DN) (mm)		Outlet flange (mm)			Seat and overall dimensions (mm)				Approx. weight (kg)				
mm	inch	DN ₁	k ₁	n x d ₁	DN ₂	k_2	n x d ₂	d _o	S ₁	S ₂	Н	L	
25/50	1"/2"	25	85	4 x 14	50	125	4 x 18	22	100	100	355	120	15
50/80	2"/3"	50	125	4 x 18	80	160	8 x 18	40	125	125	435	120	25
80/100	3"/4"	80	160	8 x 18	100	180	8 x 18	50	155	155	525	140	40
100/150	4"/6"	100	180	8 x 18	150	240	8x22	80	200	220	710	180	85

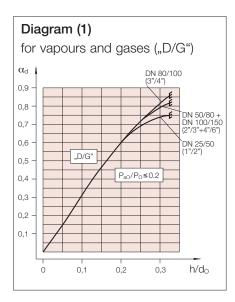
Connecting dimensions for ASME (ANSI) drilled flanges on request

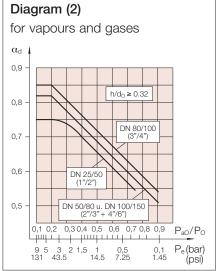
* Data for ASME/ANSI series KSEA: see separate publication

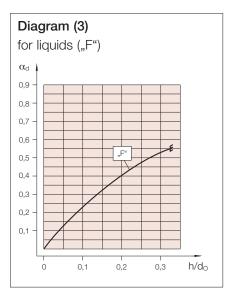
High discharge coefficients α_{d} for high discharge capacities

Certified discharge coefficients α_d as a function of h/d₀ and p_{a0}/p_0

Valve size (DN)		Flow area A₀	Vapours/Gases	Liquids		
mm	inch	(mm²)	α_d for h/d ₀ \geq 0.32 and p _{a0} /p ₀ \leq 0.2	α_{d} for h/d ₀ \geq 0.32		
25/50	1"/2"	380	0.75	0.55		
50/80	2"/3"	1257	0.82	0.55		
80/100	3"/4"	1964	0.85 (KSE-C 0.86)	0.55 (KSE-C 0.64)		
100/150	4"/6"	5027 (KSE-C 7085)	0.82 (KSE-C 0.69)	0.53 (KSE-C 0.51)		


Advantage: The KSE safety valves can be adapted to the discharge mass flow by means of a lift reduction (details on request) in the event of possible oversizing.


Vapours and gases: With pressure conditions $p_{a0}/p_0 > 0.2$ the discharge coefficients α_d are to be taken from diagram (2) and applied.


For safety valves which are to be adapted to the discharge mass flow by means of a lift reduction, the discharge coefficients α_d can be taken from diagram (1); with pressure conditions $p_{a0}/p_0 > 0.2$ a deduction in accordance with diagram (2) is to be made. This deduction is derived from the difference between the certified discharge

coefficients α_{d} (see above table) and the value taken from diagram (2) for the relevant pressure condition $p_{\text{a0}}/p_{\text{0}}$.

Liquids: For safety valves which are to be adapted to the mass flow by means of a lift reduction, the discharge coefficients can be taken from diagram (3).

Discharge capacities* for air at 20 °C and 1013 mbar (68 °F and 14.7 psi) and water 20 °C (68 °F) at 0 bar (0 psi) back pressure

Set pressure		DN 25/50 (1"/2")		DN 50/80 (2"/3")		DN 80/10	00 (3"/4")	DN 100/150 (4"/6")	
		Air	Water	Air	Water	Air	Water	Air	Water
bar	psi	(m _n ³ /h)	(kg/h)	(m _n ³ /h)	(kg/h)	(m _n ³ /h)	(kg/h)	(m _n ³ /h)	(kg/h)
0.1	1.45			310	11128	485	17387	1198	44511
1	14.5	334	10645	1154	35189	1908	54983	4684	140757
2	29	547	15054	1932	49765	3137	77758	7830	199061
3	43.5	749	18437	2676	60950	4339	95234	10841	243799
4	58	936	21289	3430	70378	5554	109966	13719	281514
5	72.5	1139	23802	4116	78686	666	122946	16463	314743
6	87	1329	26074	4802	86196	7776	134681	19207	344784
7	101.5	1519	28163	5487	93102	8888	145472	21950	372409
8	116	1708	30108	6173	99530	10000	155516	24694	398122
9	130.5	1899	31934	6859	105568	11110	164950	27438	422272
10	145	2088	33662	7545	111278	12221	173872	30182	445114
11	159.5	2279	35305	8231	116710				
12	174	2468	36875	8917	121899				
13	188.5	2657	38380	9603	126877				

^{*} for type KSE; for type KSE-C consult factory

Valve sizing, formula notation, specification

Formulas for valve sizing

(in acc. with AD 2000 data sheet A 2 and DIN 3320)

• for vapours and gases

$$A_o = 0,1791 \cdot \frac{q_m}{\psi \cdot \alpha_d \cdot p_o} \cdot \sqrt{\frac{T \cdot Z}{M}}$$

• for liquids

$$A_o = 0.6211 \cdot \frac{q_m}{\alpha_d \cdot \sqrt{\Delta p \cdot \rho}}$$

Further information

- VdTÜV data sheet 871
- Richter data sheets with discharge coefficients α_d as function of h/d₀ and p₀-p_{a0}

Please state in inquiries/orders (other dimensions acceptable, too):

- valve type, DN size, PN
- mass flow to be discharged (kg/h)
- set pressure (bar)
- back pressure (bar)
- operating pressure of the system to be protected (bar)
- medium (gas, vapour, liquid)
- temperature of medium (°C)

Additional details required for vapours and gases

- molecular mass (kg/kmol)
- isentropic exponent k of the medium in the pressure chamber
- compressibility factor Z of the medium in the pressure chamber

Additional details required for liquids

- density (kg/m³)
- specify solids if any

Formelzeichen

- $A_0 = \frac{\pi \cdot d_0^2}{4} = \text{flow area (mm}^2)$
- q_m = mass flow to be discharged (kg/h)
- α_{d} = certified discharge coefficients
- p_0 = absolute pressure in pressure chamber (bar abs)
- p_e = set pressure (bar)
- p_{a0} = back pressure in outlet nozzle (bar)
- $\Delta p = p_0 p_{a0}$ pressure difference (bar)
- ψ = flow coefficient
- T = absolute temperature of medium in pressure chamber (K)
- Z = compressibility factor of medium in pressure chamber
- M = molecular mass (kg/kmol)
- ρ = density (kg/m³)
- $d_{\circ} = minimum flow \emptyset (mm) of the safety valve$
- h = valve lift (mm)

Overflow and pressure relief valve GU series

- Lining PFA
- Hermetically sealed by bellows
- DN 25 80 (1"- 3")
- PN 16, max. 180 °C (360 °F)

Presented by:

6

Richter Chemie-Technik GmbH

Otto-Schott-Str. 2, D-47906 Kempen, Germany Tel. +49(0)2152/146-0, Fax +49(0)2152/146-190 www.richter-ct.com, richter-info@idexcorp.com